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EVOLUTION OF A CONTACT DISCONTINUITY IN 
THE BAROTROPIC FLOW OF A VISCOUS GAS* 

V.V. SBELUKIIIN 
Single-valued solvability as a whole is established with respect to time 
for an initial boundary value problem with discontinuity data for the 
equations of the one-dimensional barotropic flow of a viscous polytropic 
gas, and the behaviour of the solution is investigated, when the time 
increases without limit. The line of contact discontinuity is simulated 
by the,trajectory of a piston of small mass located between two gases. In 
particular, if the discontinuity separates one and the same gas, it is 
shown that the pressure discontinuity can only disappear in an infinite 
time, and the discontinuity decays exponentially. 

Suppose that at the initial instant t- 0 the region -t<E <O is filled with a gas of 
viscosity p, with equation of state pl= a#, and the regionO<~<lis filled with a gas 
with corresponding characteristics p, and PI-(I~P~, where Bi.~.yt>i@= I, 2) are positive 
constants, p is the pressure and P is the density. Below, the velocity is denoted by U. 

The behaviour of the medium in region -i<E<lat t>O is defined as follows. The 
motion of each gas outside the line of contact discontinuity 6 = C(t),C(O)=O is defined by the 
equations 

P (ut + us,) = PU& - Pt, Pt + (PN~ - 0 (1) 

The conditions of contact discontinuity on the unknown line c-C(t) have the form 

IUI = IPUE - PI = 0. C’ (0 = 88 (14 - u (C w -I- 0.4 - u w (t) - 0.0) (2) 

Further, we will assume that at the points E=-i,&-i the conditions of adhesion 
are satisfied 

u (-1, t) = u (1. ti = 0 (3) 

The functions 0, (6). p*(E). 

u (E, 0) = s, (El, P (f.6) = PO (E) (4) 

that specify the initial conditions are assumed to be smooth when E#O. while at the point 
E= 0 the continuity of the functions p,,p# is not required. 

Problem (l)-(4) is conveniently solved in Lagrangian mass variables 
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2 (E, q = 5 b(Y,QdY 
C(O 

in which the line of contact discontinuity becomes known and has the form .z=O. 
We will introduce the following notation: 

Q1 = (2: -b<z<O), a,= {z: O<z<4) 
Q = % U % QW = hl< x (0, T), I- = (2. t : z = 0, t > 0) 

(4 
hi = 

I s 
p. (&)de I, u = P-'9 0 = w"‘~ - P, P = 'JP' 

0 

where p (+I, Y (4, n (4 are piecawise-constant functions that in the regions n,,Q, take the 

values CL~, yl, a1 and pI,oI,o, , respectively. 
In the new variables the initial problem (l)-(4) is defined as the initial boundaryvalue 

problem in the region SJ ~(270) for equations with discontinuous coefficients and initial 
conditions 

(rf = a,, UI = "I; [U) - folr = O,ufan = 0 
P (z, 0) = u. (I), ” (*,‘O;-= 

(5) 
” 0 (2) 

We will present the main results using the notation of functional spaces in /l/. 

Theorem 1. Let the following conditions be satisfied: 

1) a0 sE HSCY (G). "0 E H'+" (&=&);un, a0 E c (8); 0 <v < i: 
2) infa 00 > 0, sups V@ < 00; 3) oti jw = 0 

Then a unique classic solution of problem (5) as a whole exists with respect to time, and 
it has the properties 

IE Ho+v, l+M (iJT), " E iYr+V"+V'r&)' VT > 0 

where the function v is strictly positive and bounded. 

Theorem 2. When the time increases without limit the solution of problem (5) is stabil- 
ized, i.e. it reduces to a stationary solution U= 0.p =p, in the following sense: 

2 

The constant p, is obtained from the relation 

hl(p,a;')"'+hn(P,cr;')~=SVodL~~, x=--y 1 
P 

When yIpI-' = ylp,-l and PO (0 + O)+pp, (0 -O), positive constants ci (i = i,2,3,4) exist indep- 
endent of t such that 

c, =P (- c,t) 6 I fPlr I < fa erP (- Cd) 

Below we give a brief proof of these statements. The solution of problem (5) is obtained 
as the limit of the solution of the problem (problem A), analogous to (5), as m-0 , where 
the conditions of contact discontinuity on the line l' is replaced by 

fdr = 0. mUt = ful, (U 0) = u (0, t)) 

For each fixed m70 problem A defines the motion of a free piston of mass m, which 
separates two gases. 

Problem A was investigated in /2/, and for it Theorem 1 holds. We pass to the limit on 
the basis of estimates of the solution, independent of m, in the norms of Hblder spaces and 
the theorem of imbedding. The method used in /2/ is used to obtain the estimates. 

The basis of the proof of Theorem 2 on the stabilization is the estimate of the solutions 
of problem (5) that are uniform in time. Among these the upper and lower bounds of the density 
are paramount; they are derived using the laws of conservation of energy and mass 

from the following relations: 

E(r,r)d? 
0 
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Once we have time-uniform estimates for the density, all the remaining estimates, as well 
as the asymptotic forms 
reasoning as in /3/. 

1. LADYZHENSKAIA O.A., 

of Parabolic Type. 
2. SHHLUKHIN V.V., The 

with respect to time can be obtained by following <he same line of 
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A FlETHOD OF CALCULATING THE AERODYNAMIC CHARACTERISTICS OF BODIES ON THE 
BASIS OF INVARIANT RELATIONS OF THE THEORY OF LOCAL INTERACTION* 

A.V. ANTONHTS and A.V. DUBINSXII 

The existence of relations between the aerodynamic characteristic of solids 
of revolution of various forms that are invariant to the model of the flow 
over them and to the angle of attack is proved. A method of calculating 
the characteristics is developed on that basis. An example of its use 
for bodies with a generatrix of exponential form is considered, and a 
comparison with "exact" numerical calculations is made. 

Within the framework of models of local interaction (/l-4/ and others) the local intera- 
ction force of the flow at each point of the body surface depends only on the local angle of 
attack and on parameters that define the process of flow over bodies "as a whole". Such models 
are effectively used over a wide range of flows (the free molecular mode, hypersonic flows of 
dense and rarefied gas, the light stream flow, and the intermediate region of rarefied gas 
flow). However, existing methods of aerodynamic calculations (/1,4/ and others) presume a 
knowledge of the specific model of local interaction. 

Let the surface of a convex solid of revolution in the system of coordinates .~cpr attached 
to the body be given by the function r(+)with the 01 axis directed along the body axis. An 
expression for the coefficient of the projection of the aerodynamic force R on some direction 
defined by the unit vector I can be represented in the form 

where g is the pressure head, oc is the angle of attack, and Sk and rt are the area and 
radius of the middle cross section. The functions Fr,rDI depend on the indicated arguments 
and the model of the flow, and u ==&/dr is the cotangent angle of inclination of the body 
contour to its axis that takes values from u_ to u+. 

Let us consider n++ bodies whose generatrix angle of inclination to the axis varies 
over the same range. The subscript Y indicates the number of the body. Then, if the function 
r, (u) (v = 0, 1, . - ., n) satisfies the condition 

(2) 

it follows from (1) that their AXC1,, of the same kind are connected by the relation 
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